Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

نویسندگان

  • A. Barik
  • N. K. Goel
  • K. I. Priyadarsini
  • Hari Mohan
چکیده

Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as CDCl3, (CD3)2SO, (CD3)2CO, CD3OD and CD3CN. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond Fluorescence Upconversion Investigations on the Excited-State Photophysics of Curcumin

The demonstration of curcumin as a photodynamic therapy agent has generated a high level of interest in understanding the photoinduced chemical and physical properties of this naturally occurring, yellow-orange medicinal compound. Important photophysical processes that may be related to photodynamic therapy effects including excited-state intramolecular hydrogen atom transfer (ESIHT) occur with...

متن کامل

Spectral and Photophysical Behaviors of Curcumin and Curcuminoids

In order to obtain detailed information on ground and excited states of curcumin and curcuminoids, as well as to understand the photobiological characteristics of them, their spectral and photophysical behaviors are investigated in various conditions. Various curcuminoids were obtained and their structures were determined by spectroscopic methods. In n-hexane, the absorption and fluorescence sp...

متن کامل

Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.

Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photop...

متن کامل

Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin

Bis-dehydroxycurcumin tert-butyl ester (K2T23) is a derivative of the natural spice curcumin. Curcumin is widely studied for its multiple therapeutic properties, including photosensitized cytotoxicity. However, the full exploitation of curcumin phototoxic potential is hindered by the extreme instability of its excited state, caused by very efficient non radiative decay by means of transfer of t...

متن کامل

Synthesis and photophysical properties of “center-to-edge” type phosphorus(V) porphyrin arrays

The synthesis, characterization and photophysical properties of a series of “center-to-edge” type phosphorus() porphyrin arrays in which the central phosphorus atom of one phosphorus() porphyrin is connected to the mesophenoxy edge of the other phosphorus() porphyrin(s) are described. The conformation of the porphyrin arrays is estimated from the NMR data on the basis of the porphyrin ring c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004